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Abstract. The average phase space density (APSD) of the particles produced in high energy nuclear
collisions at ultrarelativistic energies has here been theoretically estimated on the basis of some particular
models for particle production spectra. The model-based values so obtained have been compared with the
very recent experimental results in the field on the relevant observable and also with the calculated results
obtained by some other models. Based on such comparisons, the present work indicates very strongly that
Hagedorn’s model has a sound potentiality to achieve a competitive status in its capability to deal with
the data on the APSD factor in heavy-ion collisions. The impact and implications of all this have also been
emphasised here in the end.

PACS. 25.75.-q Relativistic heavy-ion collisions – 25.75.Gz Particle correlations – 24.10.Pa Thermal and
statistical models – 13.85.Ni Inclusive production with identified hadrons

1 Introduction

Pionisation in high energy heavy-ion collisions constitutes
an interesting and exciting area for the contemporary
studies [1]. Characterising the spatial and dynamical dis-
tribution of pions, a particle interferometry-based space-
time analysis helps us to estimate the average phase space
density [2–4] attained in the collisions. This factor offers
a reliable and convenient testing ground for the proposed
phenomenological models applied to the microscopic simu-
lations of the complicated multiparticle dynamics. In fact,
this factor and the topic thus becomes essentially a linking
bridge connecting the physics of relativistic heavy-ion col-
lisions, (lead-lead collisions in the present work), multipar-
ticle production scenario and the physics of quark-gluon
plasma (QGP).

The average phase space density (APSD), that is, the
phase space density averaged over the homogenity vol-
ume of the particles immediately after the completion of
hadronisation called freeze-out, depends mainly on two
factors: i) the nature of the single-particle momentum
spectrum and ii) the behaviour of the two-particles corre-
lation function. For the former, there are various models
among which we choose here a few as stated later and de-
scribed below, while the latter remains the same through-
out the present work. The main objective here is to calcu-
late the average phase space density on the basis of some
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standard empirical models for pionisation which accom-
modate modest observance of Feynman Scaling (FS) in
the nucleon-nucleon collision, to modify them necessarily
for applying to the cases of nucleus-nucleus collisions and
to test the merits of the applied models in the light of
the experimental data on the average phase space density
(APSD), denoted by 〈f〉.

The factor essentially deals with the multiplicity dis-
tribution in the phase space region. The estimation of the
APSD is sensitive to the absolute multiplicity of the par-
ticles. Furthermore, it also provides hints to the possible
appearance of “overpopulation” in some parts of the phase
space. Such cases of overpopulation might lead, in prac-
tical terms, to pion-“laser” phenomena etc. For all these
reasons, the interest in the average phase space density is
now very much on the rise.

The organisation of this work is as follows. In sect. 2 we
introduce the basic formalism with familiarisation of the
terms used. In sect. 3, we present the outline of the chosen
models for pion production spectra in the nucleon-nucleon
collisions which provide one of the key foundations of the
calculations of the average phase space density. In sect. 4,
we present some relevant and detailed information which
are to be used in the final calculations of the APSD. Sec-
tion 5 contains the results of the model-based calculations
and analyses. The last section (sect. 6) is reserved for the
precise concluding remarks.
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2 Expression for average phase space density

The expression for the two-particle correlation func-
tion [5–7] is given by

C(p1, p2) = 1 +

∣∣ ∫
d4x eiq·x S(x,K)

∣∣∫
d4x S(x, p1)

∫
d4y S(y, p2)

, (1)

where (q = p1 − p2, K = (p1 + p2)/2). Combining the
above expression with that of the one-particle spectrum
obtained from

E
d3N

dp3
= P1(p) =

∫
d4x S(x, p) , (2)

(S(x, p) is the single-particle Wigner phase space density
of the particle emitting source), we get

P1(p1)P1(p2)[C(p1, p2)− 1] =
∣∣∣∣
∫

d4x eiq·xS(x,K)
∣∣∣∣
2

.

(3)

Let us introduce the time integrated emission function

Σ(x,K) =
∫ ∞

−∞
dt S(t,x + vt,K) , (4)

where v = K/K0. This quantity allows us to rewrite the
integral of eq. (3) over on-shell momenta q satisfying q ·
K = 0,∫

d4q δ(q ·K) [P1(K +
q

2
)P1(K − q

2
)(C(q,K)− 1)]

≈ (2π)2

EK

∫
d3x Σ2(x,K) . (5)

Here, the on-shell approximation (which is valid for
q2 � 4E2

K) has allowed the replacement K0 → EK =√
m2 +K2 . We also find,

P1(p) =
∫

d3x Σ(x,p) (6)

Σ(x,p) is not the phase space density. In the following,
we establish how it is connected to the latter. The phase
space density f(t,x,p) is obtained by summing over all
the particles of a given momentum emitted up to time t
along a given trajectory

f(t,x,p) =
(2π)3

Ep

∫ t

−∞
dt́ S(t́,x + v(t́− t),p) . (7)

The factor in front of the integral assures the correct
normalization of f to the number of particles for t > tf ,
where tf is the last instant of the freeze-out process. One
easily can show that

En
p

(2π)3n

∫
d3x fn(t > tf ,x,p) =

∫
d3x Σn(x,p) .

(8)

From eq. (5) and eq. (6), then, follows:
∫

d4q δ(q ·K) [P 2
1 (K)(C(q,K)− 1)]

≈ EK

(2π)3

∫
d3x f2(t > tf ,x,K) , (9)

P1(K) =
EK

(2π)3

∫
d3x f(t > tf ,x,K) . (10)

In eq. (9) we have performed the smoothness approxi-
mation P1(K + q

2 ) ≈ P1(K − q
2 ) ≈ P1(K). Dividing these

two equations (and changing the notation K → p) we
obtain [6,7]

〈f〉(p) =
∫
d3x f2(t > tf ,x,p)∫
d3x f(t > tf ,x,p)

, (11)

≈ P1(p)
∫

d4q δ(q · p) [C(q, p)− 1] . (12)

This allows to determine the phase space density of
free streaming particles averaged over positions at con-
stant global time, since all quantities on the r.h.s can be
measured. Due to Liouville’s theorem, the phase space
density of free-streaming particles does not change, and
hence eq. (12) gives the phase space density averaged along
the freeze-out hypersurface.

Indeed, for a hypersurface σf , on which the freeze-out
process is just completed, and a global time coordinate
tf(x), one can show that

Ep

∫
σt

d3x fn(t > tf ,x,p)

=
∫

σf

pµ d3σµ(x) fn(tf(x),x,p) , (13)

where σt is the hyper surface given by t = const > tf and
d3σµ is the infinitsimal normal vector to σf . The factor
p · d3σ is known from the formalism of Cooper and Frey
and stands for the flux of the particles across σf . The
relation allows us to rewrite eq. (11) as

〈f〉(p) =

∫
σf

p · d3σ(x) f2(tf(x),x,p)∫
σf

p · d3σ(x) f(tf(x),x,p)
. (14)

This is the phase space density averaged over the hy-
persurface along which the freeze-out is just completed.
Equation (14) establishes what can be learnt about the
phase space density in a model-independent way. A back
extrapolation across the freeze-out boundary is only pos-
sible if additional assumptions about the mechanism of
particle production are made.

For the two-particle correlation we use the Cartesian
parametrisation

C(q,p)− 1 = exp[−qoR2
o(p)

−qsR2
s (p)− qlR

2
l (p)− qoqlR

2
ol(p)] , (15)
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where qi’s are the components of the momentum difference
in the out-side-long co-ordinate system and Rs(p), Ro(p),
Rl(p) and Rol(p) are the HBT radii. The integration over
q in eq. (12) is simple and leads to

〈f〉(pT , Y ) =
dN

dYMTdMTdφ
1

Veff(pT , Y )
, (16)

with

Veff(pT ,Y ) =
MT coshY

π3/2
Rs(p)

√
R2

o(p)R2
l (p)−R4

ol(p) .

A comment is in order here. In reality, a fraction of the
observed pions stems from resonance decays after freeze-
out. But the pions from long-lived resonances have here
been reasonably neglected, since they do not practically
contribute to the phase space density at freeze-out, as their
arrival is much delayed. However, the role of the pions
from the short-lived resonances cannot be overlooked as
their neglect might lead to underestimation of pions. This
is because of the fact that these decays occur in the spatio-
temporal region where the emission of direct pions takes
place in profuse number leading to the phenomenon of
pionisation in which we are interested here, especially in
consideration of the transverse momentum or rapidity re-
gion of our interest. In accommodating these features, the
expression for average phase space density needs to reckon
only a correcting and fractionating factor,

√
λ which has

to be introduced in ensuring the inclusion of only the de-
sirable contributions from the short-lived resonances. The
final working relation here, thus, boils down to

〈f〉(pT , Y ) =
√
λ

dN
dYMTdMTdφ

1
Veff(pT , Y )

. (17)

3 Models for transverse one-particle spectra

The one-particle momentum spectrum, determined as the
space time integral of the emission function S(x, p) is sen-
sitive to the momentum distribution in S(x, p) and thus
allows to constrain essential parts of the collision dynam-
ics. For the heavy-nucleus collisions we start in our ap-
proach by considering the rapidity integral transverse mo-
mentum spectrum. We assume, first, that only the direct
“thermally” produced pions are produced and so mod-
elled. Secondly, for the sake of simplifying the calcula-
tions, we neglect here the contributions arising out of the
resonance decays —both short-lived and long-lived.

As was done by Humanic [8] let us take the one-particle
transverse momentum spectra given by

dN
MTdMT

= C exp
[
−MT

∆

]
, (18)

where MT =
√

(p2
T +m2) is the transverse mass, pT is

the transverse momentum, m is the particle rest mass,
C is a normalisation constant and ∆ is the slope param-
eter. But the observations over the one-particle spectra
reveal that the slopes appear systematically flatter for

central collisions than for peripheral ones [9]. The above
parametrisation of one-particle spectrum is suitable only
in the region 0.8 GeV/c2 ≤ MT ≤ 2.0 GeV/c2. The flat-
tening of the distributions with increasing centrality shows
that the spectral shapes can be described very poorly by
an exponential curve. Actually, a concave behaviour of pp
data is observed over the whole MT range. Its properties
can be analysed quite well by calculating the local slope,
defined by

T−1
loc = − d

dMT

[
log (E

d3σ

dp3
)
]
. (19)

The observed local slopes are not constant, as in the
case of a purely exponential distribution, but change con-
tinuously over the measured MT range for both central
and peripheral collisions. At high pT , where the nucleus-
nucleus collisions can be described by perturbative QCD,
the pion production spectra show a power law behaviour.
Hagedorn suggested a parametrisation for inclusive cross-
sections in pp collisions in the following form [10]:

E
d3σ

dp3
= C ′

(
p0

pT + p0

)n

, (20)

where C ′, p0 and n are free parameters, which are pre-
sented in a tabular form (table 2 below). The longitudinal
component of the inclusive cross-section reflected through
the rapidity term or variable has been absorbed as nearly
a constant in the empirical C ′ term. This renders the left-
hand sides of both (18) and (20) essentially quite compat-
ible and comparable in so far as the production of single-
particle spectra is concerned.

In fact, our main objective here is to put these two em-
pirical models for hadronisation (after freeze-out) to test
and examine their validity in the light of the measurement
of the observable, average phase space density.

For nucleus-nucleus collisions (A+B collisions) the in-
clusive cross-section possesses a nuclear dependence term
as follows [11,12] :

E
d3σ

dp3
(AB) = (AB)α(pT ) E

d3σ

dp3
(pp) . (21)

The parameter α(pT ) depends weakly on rapidity but
strongly on pT . At low pT , α increases and this indicates a
growing participation of the nuclear volume. In the present
work, neglecting rapidity links, we take α ∼ 1+0.06pT for
lead-lead collisions and moderate values of pT ≤ 3 GeV/c.
The chosen expression for α as a function of transverse mo-
mentum is cast in the present form in order to give the in-
clusive cross-section results an interaction-specific depen-
dence of form. The coefficient of transverse momentum in
α(pT ), which varies quantitatively and slowly from reac-
tion to reaction depending primarily on the mass numbers
of both the projectile and target nucleii, takes care of this
feature. We have so far an intuition and insight, supported
by data available to us to date for some heavy nucleus-
nucleus collisions, that the coefficient is dependent on the
product of the mass numbers of the target and projectile
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Fig. 1. Plot of E d3σ
dp3 versus pT for pions produced in Pb-Pb

reaction at CERN. Data points are from ref. [12].

nucleus. The nature of the dependence of the coefficient
can be predicted/ascertained, if and only if the relevant
data on a set of good number of nucleus-nucleus colli-
sions at high energies involving nucleii of intermediate-
range mass numbers are available. In this connection an
interesting point of probe is whether the coefficient has
any

√
s-dependence or not; though, for the sake of sim-

plicity and due to paucity of data, which are available
only for a very few and sparse specific center of mass en-
ergies, we have chosen temporarily not to broach here on
this aspect in any further detail. In our opinion, it would
be better to suggest tentatively a form of dependence,
α(xT ), where xT = 2pT√

sNN
which would be much more con-

sistent and compatible with the idea of the scaling. We
have a plan to work on this problem with this approach
in a series of future work. However, for the present, let us
proceed with the given simple form with a view to just
reproducing the data successfully and as simply as pos-
sible, though, obviously, in a phenomenological manner.
The further assumption here of linear dependence is for
both simplifying the calculations and obtaining reliably
good fits with various data-sets. Thus, seen from this an-
gle of simple physics, for Pb-Pb collisions, the value of the
coefficient is found to be 0.06. Besides, in the above choice
we have introduced the probable role of the Cronin effect
on the value of α considered here. The adjoining diagram
(fig. 1) shows the nature of the very nice fit obtained by
the combination of expressions (20) and (21) for the pT

spectra of pions produced in relativistic Pb-Pb collision.
Data for Pb-Pb collision are obtained from ref. [12]. In ex-
amining the general validity of the expressions forwarded
and utilised here for the conversions of the results on inclu-
sive cross-section for pion production in nucleon-nucleon
collisions (as proposed by Hagedorn-based model) to those
in high-energy nucleus-nucleus reactions, we have checked
the proposed relationships for various proton-induced and

(heavy)nucleus-involved interactions at high energies with
encouraging success. In a subsequent and separate paper,
we are going to report on and deal with these very inter-
esting results in some detail. And on the basis of it a point
must be made quite emphatically and that is: the observed
excellent agreement between the newly proposed models
and the data-sets on Pb-Pb reactions is just not fortu-
itous. The underlying physics seems to have much deeper
significance and stronger basis which we would hint later.
With this statement, let us now revert, once again, to the
calculational procedure.

The theoretical estimate of the factor dN
MT dMT dY dφ in

the final working formula (eq. (17)) has to be obtained on
dividing eq. (21) by the total inelastic cross-section σin for
A+B collisions. Hence, the required expression is

dN
MTdMTdY dφ

=
1
σin

(A ·B)α(pT ) E
d3σ

dp3
(pp) . (22)

Therefore, the average phase space density, denoted by
〈fHag〉, using Hagedorn’s expression (eq. (20)) for single-
particle spectrum, is given by

〈fHag〉 = 1
σin

E
d3σ

dp3
(A ·B)

×
√
λ π3/2

MT coshY Rs(pT )
√

R2
o(pT ) R2

l (pT )−R4
ol(pT )

=
(A ·B)
σin

C ′
(

p0

pT + p0

)n

×
√
λ π3/2

MT coshY Rs(pT )
√
R2

o(pT )R2
l (pT )−R4

ol(pT )
. (23)

To compare 〈fHag〉 with the average phase space den-
sity derived from an exponential distribution of single-
particle spectrum, we also calculate the APSD by adopt-
ing Humanic’s model [6]. And the expression for APSD
from Humanic’s model is given by

〈fHum〉 =
C
√
λπ

2

×
dn−
dy exp [−MT /∆]

MT coshY Rs(pT )
√
R2

o(pT )R2
l (pT )−R4

ol(pT )
. (24)

4 Inputs for calculation

In both cases the analyses here are done in the longitu-
dinally comoving system (LCMS), where the longitudinal
momentum of the pion pair vanishes. The HBT radii in
LCMS are given by
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Fig. 2. Average freeze-out phase space density for Pb-Pb colli-
sions as a function of pT in the rapidity interval 2.9 < y < 3.4.
Data points are from ref. [2] and for T = 120 MeV.

Table 1.

T ηf R τ0 δτ δη βT

120 MeV 0.48 6.8 fm 8 fm/c 3.5 fm/c 1.3 0.7

Table 2.

C′ (mb) p0 (GeV/c) n A = B

42 4.9 34 208

R2
l (MT ) = τ2

0 (T/MT ) ,

R2
s (MT ) =

R2

1 + (MT /T ) η2
f

,

R2
o(MT ) = R2

s (MT ) +
1
2

(
T

MT

)2

β2
T τ2

0 ,

R2
ol(MT ) =

pTY

M2
T

T

(δη)2

[
(δτ)2 + τ2

0

T

MT

]
, (25)

where τ0 is the longitudinal proper freeze-out time, η =
1
2 ln t+z

t−z is the space time rapidity, ηf is the transverse flow
strength of the source and R = R(Pb) = 1.15×(208)1/3 =
6.8 fm with Woods-Saxon density distribution [13].
The values of different source parameters used in our cal-
culation are given in table 1.

In Hagedorn’s model for pionisation the parameters
are given in table 2.

In Humanic’s model the slope parameter is given by
∆ = 270 MeV. The value of λ in both the cases was taken
0.7. The overall analyses were done separately for three
regions of two-particle rapidity bins of width 0.5.

The results of our calculations based on both Hu-
manic’s as well as Hagedorn’s models for pionisation are

Fig. 3. Average freeze-out phase space density for Pb-Pb colli-
sions as a function of pT in the rapidity interval 3.4 < y < 3.9.
Data points are from ref. [2] and for T = 120 MeV.

Fig. 4. Average freeze-out phase space density for Pb-Pb colli-
sions as a function of pT in the rapidity interval 3.9 < y < 4.4.
Data points are from ref. [2] and for T = 120 MeV.

presented in fig. 2 to fig. 4. They have also been compared
with the experimental measurements indicated by filled
squares and also with the results of the thermal model
represented here by the Bose-Einstein equilibrium distri-
bution and depicted in the graphs by the dotted curves.

5 Results and discussion

The adjoining diagrams (fig. 2 to fig. 4) demonstrate here
the performances of the chosen phenomenological models
for pionisation after freeze-out. The thin dashed curves
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represent the status of the thermal model with regard to
the estimation of the APSD; the relatively thick dashed
curves provide the fit at T = 120 MeV based on Hu-
manic’s model [8] which assumes an exponential trans-
verse momentum distribution for pions, and the solid
curves (present work) in the figures depict the calcula-
tions for the same on the basis of Hagedorn’s model.
The comparison of the diagrams shows that Humanic’s
model describes quite well the data in the rapidity region,
2.9 < y < 3.4, but fails for the other higher rapidity win-
dows; whereas on APSD the other two models perform
somewhat better in comparison, especially in the rapid-
ity window, 3.4 < y < 3.9. However, in the rest of the
present discussion, we will keep ourselves confined only
to the thermal and the Hagedorn’s model, as firstly, the
thermal model constitutes predominantly the state-of-the-
art approach and, secondly, Humanic’s model, until now,
is not a very widely applied model. It is also undeniably
true that, in so far as the application of Hagedorn’s model
to the issue of average phase space density in heavy-ion
collisions is concerned, the approach offered by us here
is somewhat in the same position as that of Humanic’s
one. Still, the search for a new and better approach is al-
ways justifiable in physics, in particular and in science,
in general.

Hagedorn’s model used here, quite notably, smacks
essentially of the idea of Feynman scaling, as the in-
clusive cross-section is assumed to behave in an energy-
independent manner and it is quite well known that from
small to modestly high pT (pT ≤ 2GeV/c) region even the
QCD-inspired jet models prescribe only moderate and no
strict observance of the Feynman scaling. Thus, it is hardly
surprising that the Hagedorn’s model with modest obser-
vation of the Feynman scaling provides a good description
of the data on APSD and that could be set, in our opin-
ion, on a par with the thermal model which is surely a
phenomenological model.

The calculations are made here by us for Pb-Pb col-
lision alone and for hypothetical freeze-out temperature
(T = 120 MeV ), as the data are available only for
T = 120 MeV. Besides, we have also tested the present ap-
proach with the estimation of APSD factor for some other
sulpher-induced heavy-ion reactions with remarkable suc-
cess which we had dealt with in a separate work [14]. The
modest agreement for Pb-Pb collision has been obtained
here for a wide region of the transverse momentum spec-
tra with Hagedorn’s model and with temperature value
of T = 120 MeV. Agreement with data is reasonably
fair for the intermediate range of pT values. And this is
only natural as the measurements at very small pT values
(pT → 0) or at very large pT values are always liable to
errors. Finally, our calculation-based diagrams, which de-
pict the general nature of the APSD factor and its values
at various transverse momenta, corroborate consistently
the observed physical features of pionisation in the rel-
ativistic lead-lead collisions. So, in our opinion, the new
approach induced by the application of Hagedorn’s model
for nucleus-nucleus collision might provide either a par-

allel or a viable alternative to the set of the few existing
models.

6 Concluding remarks

Let us now sum up the main observations made here. The
calculational support to the QCD-inspired description of
the particles produced in high-energy collisions in the pre-
scription offered by Hagedorn is quite evident from the
nature of agreement between data and calculations. The
present study produces a fit to the observed data some-
what comparable to the thermal model with Bose-Einstein
distribution for, at least, some of the heavy-ion collisions.
Hagedorn’s model is an indirect and implicit hint to ac-
cept the Feynman scaling (even if that be for a particular
small range and region for pT values) as a reasonably solid
plank. And, to our mind, this worked quite well in so far
as the estimation of the average phase space density in
Pb-Pb collision at 158A GeV/c and of some other heavy-
ion reactions as well is concerned. A point must be made
here. The models under consideration in the present work
have peculiarly a common feature in the fact that all of
them provide perceptibly better fits to the data for rapid-
ity y-values in the range 3.4 < y < 3.9, though we fail to
provide any tangible explanation for such observations.

Prior to the present work, we have utilised the foun-
dational hypothesis of the present work to analyse the
various proposed signatures of quark-gluon plasma(QGP)
hypothesis with a modest degree of success. On the basis of
this alternative approach we have calculated the ratios of
kaon-pion [15], baryon-antibaryon and have compared the
computed values with actual measurements. Such studies
revealed striking agreement between measured data and
calculations. All this simply reinforced and strengthened
the basic premise of the present work which, stated sim-
ply, is: the physics of nucleon-nucleon collisions, at very
high energies, might be of some relevance to understand
the physics of high-energy heavy-ion collisions.
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